

Berry Technical Presentation July 2018

Disclaimer

The information in this presentation includes forward-looking statements that involve risks and uncertainties that could materially affect our expected results of operations, liquidity, cash flows and business prospects. Such statements specifically include our expectations as to our future financial position, liquidity, cash flows, results of operations and business strategy, potential acquisition opportunities, other plans and objectives for operations, maintenance capital requirements, expected production and costs, reserves, hedging activities, capital investments and other guidance. Actual results may differ from anticipated results, sometimes materially, and reported results should not be considered an indication of future performance. You can typically identify forward-looking statements by words such as aim, anticipate, achievable, believe, budget, continue, could, effort, estimate, expect, forecast, goal, guidance, intend, likely, may, might, objective, outlook, plan, potential, predict, project, seek, should, target, will or would and other similar words that reflect the prospective nature of events or outcomes. For any such forward-looking statement that includes a statement of the assumptions or bases underlying such forward-looking statement, we caution that, while we believe such assumptions or bases to be reasonable and make them in good faith, assumed facts or bases almost always vary from actual results, sometimes materially. Material risks that may affect our results of operations and financial position appear in Risk Factors in our final prospectus dated July 25, 2018 as filed with the SEC pursuant to Rule 424(b)(4) of the Securities Act of 1933, as amended, on July 27, 2018 (the "prospectus").

Factors (but not necessarily all the factors) that could cause results to differ include among others:

- * volatility of oil, natural gas and NGL prices; * inability to generate sufficient cash flow from operations or to obtain adequate financing to fund capital expenditures and meet working capital requirements;
- * price and availability of natural gas;
- * our ability to use derivative instruments to manage commodity price risk;
- * impact of environmental, health and safety, and other governmental regulations, and of current or pending legislation;
- * uncertainties associated with estimating proved reserves and related future cash flows;
- * our inability to replace our reserves through exploration and development activities:
- * our ability to meet our proposed drilling schedule and to successfully drill wells that produce oil and natural gas in commercially viable quantities:
- * effects of competition;
- * our ability to make acquisitions and successfully integrate any acquired businesses;
- * market fluctuations in electricity prices and the cost of steam;
- * asset impairments from commodity price declines;
- * large or multiple customer defaults on contractual obligations, including defaults resulting from actual or potential insolvencies;
- * geographical concentration of our operations:
- our ability to improve our financial results and profitability following our emergence from bankruptcy and other risks and uncertainties related to our emergence from bankruptcy;
- * changes in tax laws;

Berry Petroleum

Corporation

- *impact of derivatives legislation affecting our ability to hedge;
- * ineffectiveness of internal controls;
- * concerns about climate change and other air quality issues; *catastrophic events;
- *litigation:
- * our ability to retain key members of our senior management and key technical employees:
- * information technology failures or cyber attacks:
- We undertake no responsibility to publicly release the result of any revision of our forward-looking statements after the date they are made.

All forward-looking statements, expressed or implied, included in this report are expressly gualified in their entirety by this cautionary statement. This cautionary statement should also be considered in connection with any subsequent written or oral forward-looking statements that we or persons acting on our behalf may issue.

This presentation has been prepared by Berry and includes market data and other statistical information from sources believed by it to be reliable, including independent industry publications, government publications or other published independent sources. Some data is also based on Berry's good faith estimates, which are derived from its review of internal sources as well as the independent sources described above. Although Berry believes these sources are reliable, it has not independently verified the information and cannot guarantee its accuracy and completeness.

Proved reserve data included in this presentation is based on a proved reserves report prepared by DeGoyler and MacNaughton as of December 31, 2017 and its addendum dated June 28, 2018. Unless otherwise noted or suggested by context, reserve estimates were prepared in accordance with current SEC rules and regulations regarding oil, natural gas and NGL reserve reporting. Reserve engineering is a process of estimating underground accumulations of hydrocarbons that cannot be measured in an exact way. The accuracy of any reserve estimate depends on the quality of available data, the interpretation of such data and price and cost assumptions made by reserve engineers. In addition, the results of drilling, testing and production activities may justify revisions of estimates that were made previously. If significant, such revisions could impact Berry's strategy and change the schedule of any further production and development drilling. Accordingly, reserve estimates may differ significantly from the quantities of oil and natural gas that are ultimately recovered. Estimated Ultimate Recovery, or "EUR," refers to estimates of the sum of reserves remaining as of a given date and cumulative production as of that date from a currently producing or hypothetical future well, as applicable. These quantities do not necessarily constitute or represent reserves as defined by the SEC.

Disclaimer (Cont.)

Berry's estimated net proved Strip Pricing reserves were prepared on the same basis as Berry's SEC reserves, except for the use of pricing based on closing monthly futures prices as reported on the ICE (Brent) for oil and NGLs and NYMEX Henry Hub for natural gas on May 31, 2018. Berry's Strip Pricing oil, natural gas and NGL reserves were determined using index prices for natural gas and oil, respectively, as of May 31, 2018 without giving effect to derivative transactions. The average future prices for benchmark commodities used in determining Berry's Strip Pricing reserves were \$74.59 per Bbl for oil and NGLs for 2018, \$72.98 for 2019, \$69.15 for 2020 and \$66.49 for 2021 thereafter, on the ICE (Brent), and \$2.94 per MMBtu for natural gas for 2018, \$2.75 for 2019, \$2.68 for 2020 and \$2.66 for 2021 thereafter, on the NYMEX Henry Hub. The volume-weighted average prices over the lives of the properties were \$61.67 per barrel of oil and condensate, \$19.49 per barrel of NGL and \$1.943 per thousand cubic feet of gas. We have taken into account pricing differentials reflective of the market environment, and NGL pricing used in determining Berry's Strip Pricing eserves was approximately ICE (Brent) for oil less \$49.00. Berry believes that the use of forward prices provides investors with additional useful information about our reserves, as the forward prices are based on the market's forward-looking expectations of oil and natural gas prices as of a certain date. Strip Pricing futures prices are not necessarily an accurate projection of future oil and gas prices. Investors should be careful to consider forward prices in addition to, and not as a substitute for, SEC prices, when considering our oil and natural gas reserves. For a comparison of Strip Pricing to SEC Pricing, please see slides 33-34.

Berry uses PV-10, a supplemental financial measure that is not presented in accordance with U.S. generally accepted accounting principles ("GAAP"), in this presentation, which reflects the present value of its estimated future net revenues to be generated from the production of proved reserves, determined in accordance with the rules and regulations of the SEC, without giving effect to non-property related expenses such as general and administrative expenses, debt service and depreciation, depletion and amortization expense, exploration expenses and hedging activities, discounted at 10% per year before income taxes. GAAP does not prescribe any corresponding measure for PV-10 of reserves as of an interim date or on any basis other than SEC prices. As a result, it is not practical for us to reconcile PV-10 using Strip Pricing as of May 31, 2018 to GAAP standardized measure.

The type curves provided in this presentation are prepared by Berry's internal reserve engineers by conducting a decline curve analysis of production results from Berry's wells to generate an arithmetic mean of historical production for each project. Berry relied on the production results through February 1, 2018 for its own wells that it submitted to the Division of Oil, Gas, and Geothermal Resources of the California Department of Conservation ("DOGGR"), which results are publicly available at maps.conservation.ca.gov/doggr/wellfinder/#openModal, to generate the type curves, and these wells are listed on slides 31-33 of this presentation. These type curves were not relied upon by DeGoyler and MacNaughton in preparing its reserves report dated as of December 31, 2017 or the addendum to that report dated as of June 28, 2018, and DeGoyler and MacNaughton his presentation. Investors are cautioned not to place undue reliance on Berry's type curves presented herein, and Berry's actual production results and ultimate recoveries may to differ substantially.

Berry Petroleum: A U.S. Onshore Conventional Oil Company

- Conventional, oil-driven, Western United States focused
- Brent-influenced oil pricing dynamics

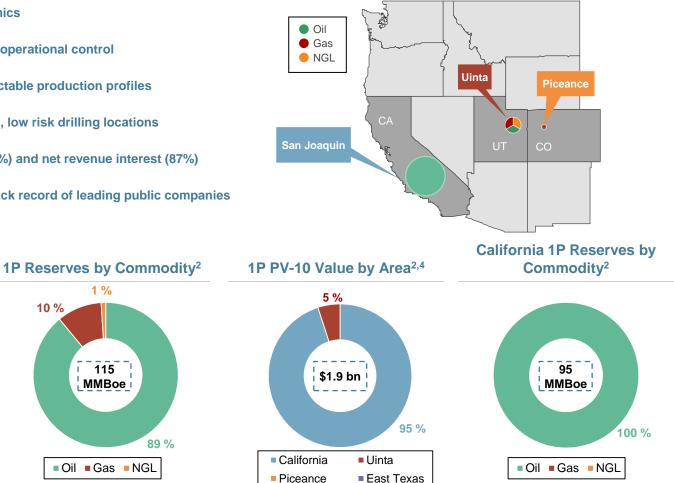
1Q18 Production by

Commodity³

2 %

26

MBoe/d


Oil Gas NGL

81 %

18 %

- Long production history and high operational control
- Shallow decline curves with predictable production profiles
- Extensive inventory of high-return, low risk drilling locations
- High average working interest (97%) and net revenue interest (87%)
- Proven management team with track record of leading public companies

1 Excludes East Texas Assets and bubble size implies PV-10 value of reserves at Strip Pricing as of May 31, 2018. | 2 Prepared based on 3rd party reserves report addendum as of June 28, 2018 and closing monthly futures prices as reported on the ICE (Brent) for oil and NGLs and NYMEX (Henry Hub) for natural gas on May 31, 2018. For a comparison to SEC Pricing, please see slide 33-34. | ³ Data may not add to 100% due to rounding. | ⁴ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10.

Berry's Completion and Recovery Mechanisms

State	Project Type	Well Type	Completion Type	Recovery Mechanism	Depth (ft.)
California	Hill Diatomite (non-thermal)	Vertical	Low intensity pin point fracture stimulation	Pressure Depletion augmented with water injection	1,300 – 2,000
	Thermal Diatomite	Vertical	Short interval perforations (dual completions)	Cyclic steam injection (steam and flow mechanics)	300 – 2,000
	Thermal Sandstones	Vertical / Horizontal	Perforations/Slotted liner/gravel pack	Continuous and cyclic steam injection	500 – 2,500
Utah	Uinta Green River / Wasatch Sands	Vertical / Horizontal	Low intensity fracture stimulation	Pressure Depletion	5,000 – 8,000
Colorado	Piceance Vertical		Proppantless Slick Water fracture stimulation	Pressure Depletion	7,500 – 12,000

Our California Assets

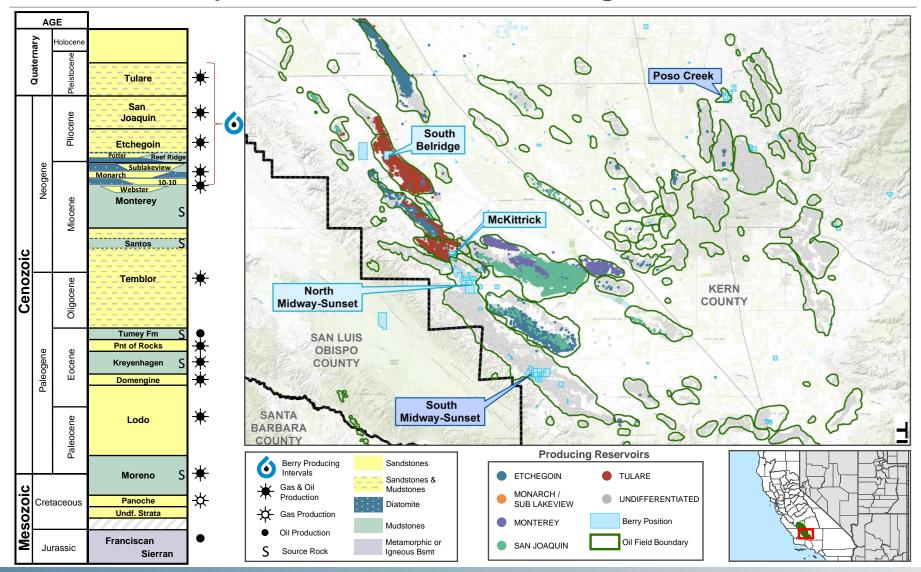
Asset Overview

- We have a concentrated position in California's San Joaquin Basin
- Production is primarily oil from prolific fields including Midway-Sunset, South Belridge and McKittrick on the west side of the Basin
- Thermal recovery techniques include cyclic and continuous injection in heavy oil diatomite and sandstone reservoirs
- 99% Held By Production in California

Berr\

Petroleum Corporation

Map of Operations


Note: Prepared based on 3rd party reserves report addendum as of June 28, 2018 and closing monthly futures prices as reported on the ICE (Brent) for oil and NGLs and NYMEX (Henry Hub) for natural gas on May 31, 2018. For a comparison to SEC Pricing, please see slides 33-34. | ¹ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10. | ² Weighted average WI across active wells as of March 31, 2018 and weighted average NRI for March 2018. | ³ Includes steam flood and water flood injection wells in California.

- Drilling opportunities exist in each asset area allowing for production growth and increased recovery and reserves
 - Prolific history of results allow for predictable results
 - Low D&C costs and quick spud to production times enhance execution of development plans
- Existing infrastructure in place to allow for production growth and improve upstream economics
 - 5 Cogeneration plants in Midway-Sunset and Placerita with ~108 MW of nameplate electrical power and ~32,000 barrels of steam per day for the three months ended March 31, 2018

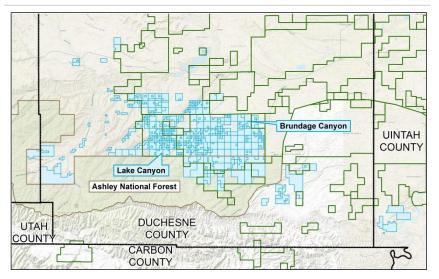
Asset Description

California	
Proved Reserves (May-18 Strip Pricing)	95 MMBoe
1P PV-10 ¹ (May-18 Strip Pricing)	\$1,762mm
Net Acreage	7,945
Core Areas	Southeast San Joaquin Northwest San Joaquin
Q1 2018 Net Production (Mboe/d)	19
Average WI / NRI ²	99 % / 94 %
Producing Wells, Gross ³	2,600
Depth of Target Formations	800' - 2,000'
Current Steam Generation Capacity	> 200 Mbpsd

Our California Operational Areas and Producing Intervals

Utah – Uinta Basin

Asset Overview

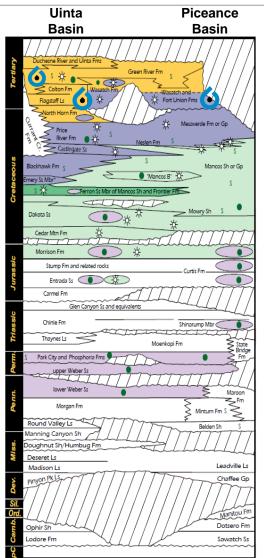

- Uinta is defined by multiple stack oil field reservoirs with tremendous undeveloped resources remaining
 - 2,000 feet of stacked oil pay in the Green River and Wasatch formations
- Proved reserves of 15 MMBoe and Proved PV-10¹ of \$91mm (5/31 Strip Pricing)
- Strategies for this asset include:
 - Refine our reservoir management plan to incorporate the 1,245 potential additional drilling opportunities on Berry acreage
 - Determine best use of horizontal technology in certain reservoirs
 - Recent results from offset operators are encouraging and as those results continue to support the investment, Berry will be a "fast follower" in 2018 by drilling horizontal locations
 - Large opportunity to move probable and possible reserves into proved categories with strategic investments
 - Continually advance cost controls for high margin returns
 - Continue successful recompletion and workover programs to maintain a strong low decline base production profile
 - Take advantage of extensive infrastructure and available takeaway capacity in place to support additional development

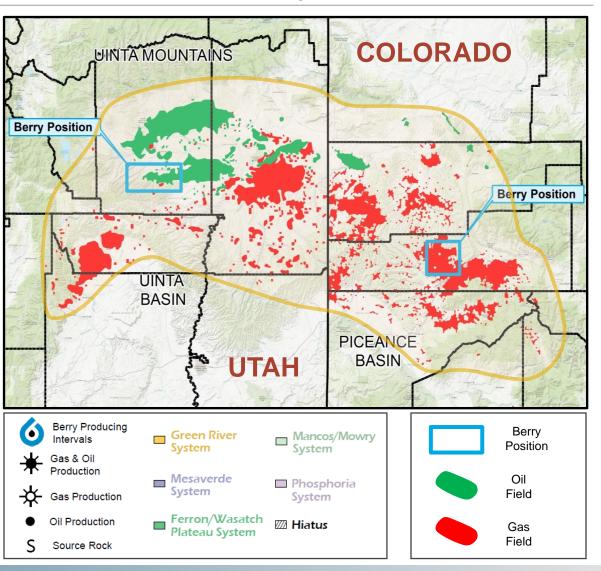
72% Held By Production

Source: Utah Department of Natural Resources

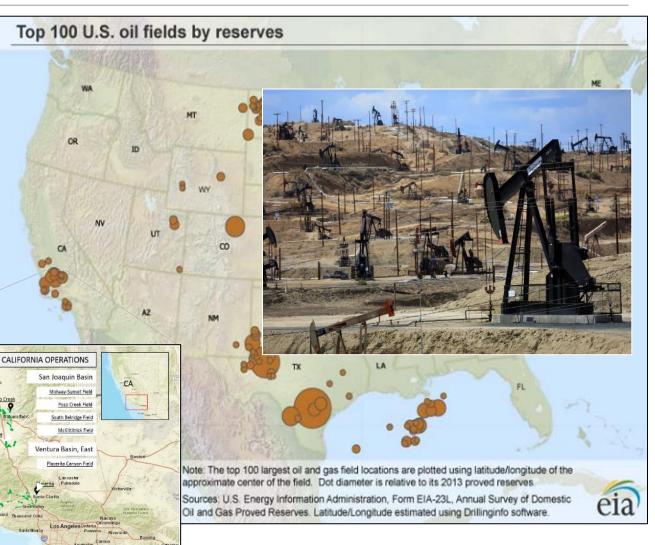
Note: Prepared based on 3rd party reserves report addendum as of June 28, 2018 and closing monthly futures prices as reported on the ICE (Brent) for oil and NGLs and NYMEX (Henry Hub) for natural gas on May 31, 2018. For a comparison to SEC Pricing, please see slides 33-34. | ¹ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10. | ² Weighted average WI across active wells as of March 31, 2018 and weighted average NRI for March 2018.

Map of Operations


Asset Description


Uinta								
Net Acreage	96,096							
Core Areas	Brundage Canyon, Ashley Forest, Lake Canyon							
Q1 2018 Net Production (Mboe/d)	5							
Average WI / NRI ²	95 % / 62 %							
Producing Wells, Gross	909							

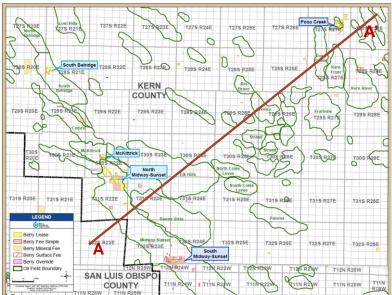
Greater Uinta – Piceance Basin and Petroleum Systems

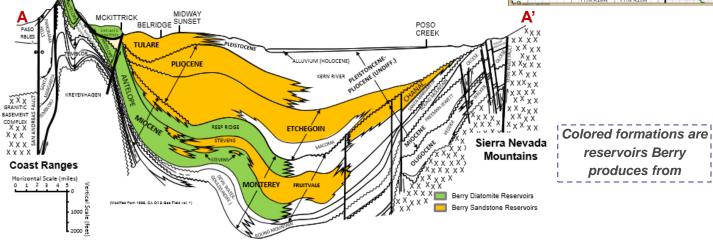


Most Berry CA Assets Located in San Joaquin "Super Basin"

- First commercial production in the San Joaquin basin began back in 1887
- Berry has positions in two of the largest oil fields in the US; South Belridge and Midway-Sunset
- Operators first applied thermal recovery in the 1960s and the techniques have been optimized through the years
- San Joaquin offers available infrastructure for future field development
- Remaining organic investment opportunities are significant

Oil Field

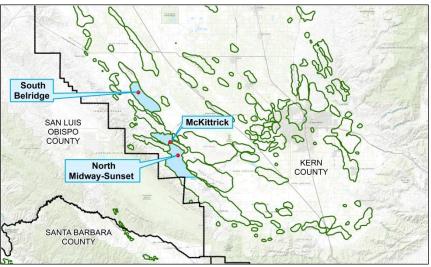




California – San Joaquin Basin – Geologic Overview

- The San Joaquin Basin is located ~ 70 miles north of Los Angeles
- San Joaquin Basin is bounded to the east by the Sierra Nevada Mountains, to the west by the California Coast Ranges, and to the south by the Transverse Ranges
- First oil production in 1887
- 4 of the largest continental U.S. oil fields are located in San Joaquin Basin and Berry has producing positions in two of them
 - South Belridge, Midway-Sunset, Kern River, Elk Hills
- Trapping mechanisms include a combination of stratigraphic, tar seals, structural, and up-dip truncation at unconformities

Source: USGS, DOGGR, California Department of Conservation


California – Northwest San Joaquin Asset

Asset Overview

- The Northwest San Joaquin asset produces from the Midway-Sunset, South Belridge and McKittrick Fields
- Proved reserves of 50 MMBoe and Proved PV-10¹ of \$1,010mm (5/31 Strip Pricing)
- The development of this asset is less mature than other assets in California
- Strategies for this asset include:
 - Continue development in each area increasing value and reserves by drilling highly repeatable low costs producers and injectors and expanding reservoir boundaries
 - Large opportunity to move probable and possible reserves into proved categories with strategic investments
 - Continually advance cost controls for high margin returns
 - Use advanced proven technology and recovery techniques to unlock value in the diatomite reservoirs
 - The opportunity in the thermal Diatomite reservoir is vast and predicated on execution of advanced thermal recovery techniques
 - Advanced fracturing techniques will raise recoveries in the non-thermal South Belridge diatomite reservoir

Note: Prepared based on 3rd party reserves report addendum as of June 28, 2018 and closing monthly futures prices as reported on the ICE (Brent) for oil and NGLs and NYMEX (Henry Hub) for natural gas on May 31, 2018. For a comparison to SEC Pricing, please see slides 33-34. | ¹ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10. | ² Weighted average WI across active wells as of March 31, 2018 and weighted average NRI for March 2018.

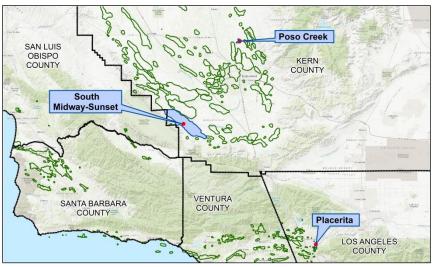
Map of Operations

Asset Description

Northwest San Joaquin								
Net Acreage	3,302							
Core Areas	South Belridge, McKittrick, Midway-Sunset							
Q1 2018 Net Production (Mboe/d)	9							
Average WI / NRI ²	100 % / 98 %							
Producing Wells, Gross	1,336							

California – Southeast San Joaquin Asset

Asset Overview

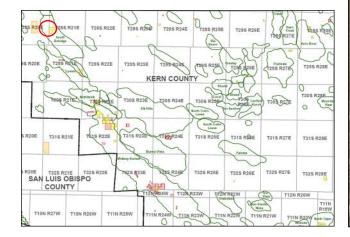

- Southeast San Joaquin is currently Berry's largest producing California asset area with production from Midway-Sunset, Poso Creek and Placerita Fields
- Proved reserves of 46 MMBoe and Proved PV-10¹ of \$750mm (5/31 Strip Pricing)
- Strategies for this asset include:

Corporation

- Maintain a strong production base by drilling highly repeatable, low decline reliable thermal horizontal and vertical wells
- Push proven technology and recovery techniques to unlock higher recovery of the large available oil in place
- Continually advance cost controls for high margin returns
- Move probable and possible reserves into proved categories with strategic investments
- A representative example of the effectiveness of the use of advanced technology and innovation in this prolific basin is the Ethel D lease located in the Midway-Sunset Field. This lease reached peak production of ~2.9 Mboe/d in recent years after over 100 years of production

Note: Prepared based on 3rd party reserves report addendum as of June 28, 2018 and closing monthly futures prices as reported on the ICE (Brent) for oil and NGLs and NYMEX (Henry Hub) for natural gas on May 31, 2018. For a comparison to SEC Pricing, please see slides 33-34. | ¹ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10. | ² Weighted average WI across active wells as of March 31, 2018 and weighted average NRI for March 2018.

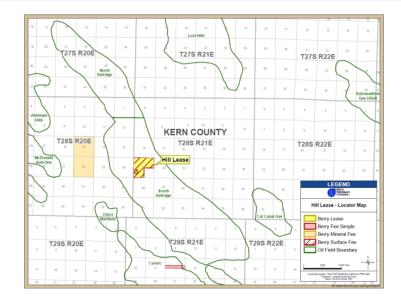
Map of Operations


Asset Description

Southeast San Joaquin								
Net Acreage	4,643							
Core Areas	Ethel D, Placerita, Poso Creek, S. Midway							
Q1 2018 Net Production (Mboe/d)	10							
Average WI / NRI ²	98 % / 93 %							
Producing Wells, Gross	1,264							

South Belridge – Hill Lease

- 502 acres
- Acquired remaining interest in July '17

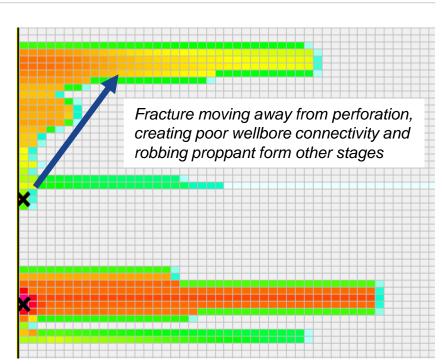

Taking Strategic Action to Narrow Focus and Consolidate Scale

In July 2017, Berry acquired Linn's ~84% working interest in the South Belridge Hill lease and sold its non-operated ~78% working interest in the Hugoton asset

Transaction Rationale

South Belridge Hill – Location Map

- Enhances size, scale and positioning in a core California asset with material upside
- Exit of a mature and non-core region, with aging infrastructure
- Production profile is now overwhelmingly oil (58% oil prior to restructuring to 81% oil today¹)
- Narrows focus, allowing for greater allocation of resource towards operational enhancements



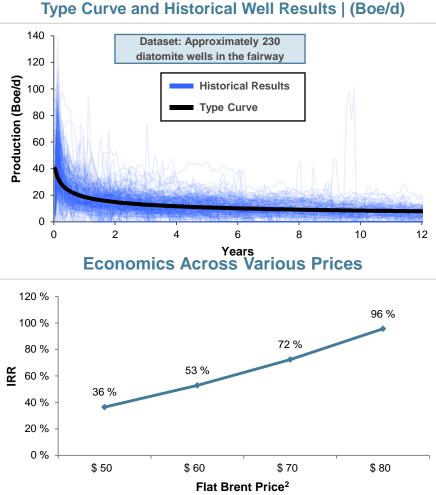
	Hill Acquisition	Hugoton Disposition
Ownership Type	Operated	Non-Operated
Berry's Portfolio	Core	Non-Core

¹ Commodity mix prior to restructuring refers to FY 2016 production (prior to Hill acquisition / Hugoton disposition). Today's commodity mix refers to 1Q 2018 production.

Plug and Perforate Fracture Model

Fracture Length (brighter color indicates more proppant)

Shift to Pin Point Fracturing

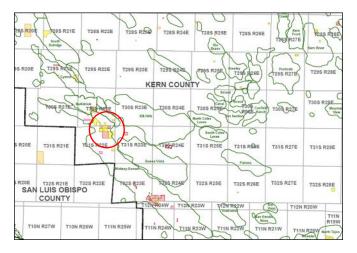

- Traditional plug and perforate hydraulic fracturing attempts to stimulate a large area at once
- Downhole tiltmeter data has confirmed that the reservoir has "thief" zones that rob some perforations of proppant
- Modeling has reproduced this phenomena and correlated it to measurable reservoir properties
- Pin point hydraulic fracturing can stimulate the same area, but by using smaller, select stages
 - Greater precision allows targeted stimulation by reservoir properties
 - Proppant being split between more stages mitigates the impact of any possible "thief" zone

Berr\

etroleum Corporation

San Joaquin – Hill Diatomite Fairway Pattern Type Curve¹ Overview

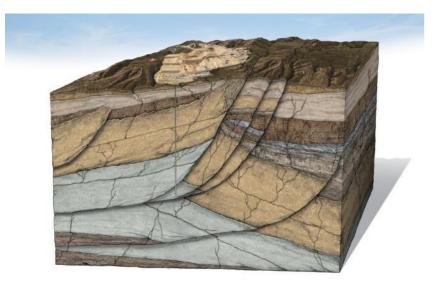
Asset Information								
Area	San Joaquin Basin							
Reservoir	Diatomite							
Drilling Pattern	3 Producing Wells: 1 Injector Well							
Number of Wells (Tier 1 / Total)	311 / 896							
WI/NRI Aggregate Pattern Type Cu Assumptions and Resul								
Gross Capex (\$mm / pattern)	\$ 2.2							
Net EUR (Mboe)	139							
% Oil	100 %							
IP90 Production (Boe/d)	94.8							
Brent Differential (\$/Bbl)	\$ 1.13							
Fixed Opex per pattern (\$k/month)	\$ 4.94							
Variable Opex ³ per boe (\$/Boe)	\$ 1.68							
Steam ³ (\$/Boe)	-							
Severance Taxes	1.9 %							
Ad Valorem Taxes	3.5 %							
IRR at Strip ⁴ as of May 31, 2018	78 %							
PV-10 ⁵ (\$mm) per pattern	\$ 3.5							

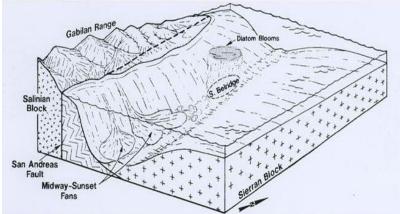

Assot Information

¹ Please see slide 2 for a note regarding the preparation of Berry's type curves. |² Assumes flat \$3 Henry Hub gas price. |³LOE costs based on run-rate average over 24 months of the well. |⁴ Berry's Strip Pricing oil, natural gas and NGL reserves were determined using index prices for natural gas and oil, respectively, as of May 31, 2018 without giving effect to derivative transactions. The average future prices for benchmark commodities used in determining Berry's Strip Pricing reserves were \$74.59 per Bbl for oil and NGLs for 2018, \$72.98 for 2019, \$69.15 for 2020 and \$66.49 for 2021 thereafter, on the ICE (Brent), and \$2.94 per MMBtu for natural gas for 2018, \$2.75 for 2019, \$2.68 for 2020 and \$2.66 for 2021 thereafter, on the NYMEX Henry Hub. For a comparison to SEC Pricing, please see slides 48-49. |⁵ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10.

North Midway-Sunset – Diatomite

- 2,640 acres
- Recent acreage adds





Thermal Diatomite Geologic Overview Reservoir Properties

Diatomite

Source: Internal Well Information on Berry Properties

- Thick pay (+/- 400')
- Very high porosity
 - Opal A:55-75%
 - Opal CT: 40-55%
- Poor permeability
 - Matrix <5 mD
- Highly compressible
 - Production depletes fluids
 - Causes compaction and subsidence
- High oil saturation
 - 30-95% in producible intervals
- Highly faulted and fractured
 - Greater deformation near McKittrick Fault
 - Overturned and faulted folds common
- Heavy oil (13° API)
 - Produced from fractures both natural and induced
 - Higher perm zones (bitumen zones etc.) depleted of oil can serve as steam thief zones

Diatomite Recovery Fundamentals Summary of Key Recovery Components

Permeability Enhancement (1k)

 Diatomite matrix has essentially no natural permeability (0.5-5md) and requires fracturing to provide flow paths to and from the reservoir

Viscosity Reduction $(\downarrow \mu)$

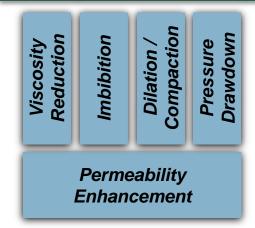
Heavy oil requires viscosity reduction to flow

Imbibition (↑I)

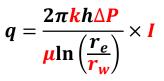
Berrv

etroleum Corporation

- Primary mechanism responsible for oil flow from matrix
- Enhanced by temperature increase and viscosity reduction

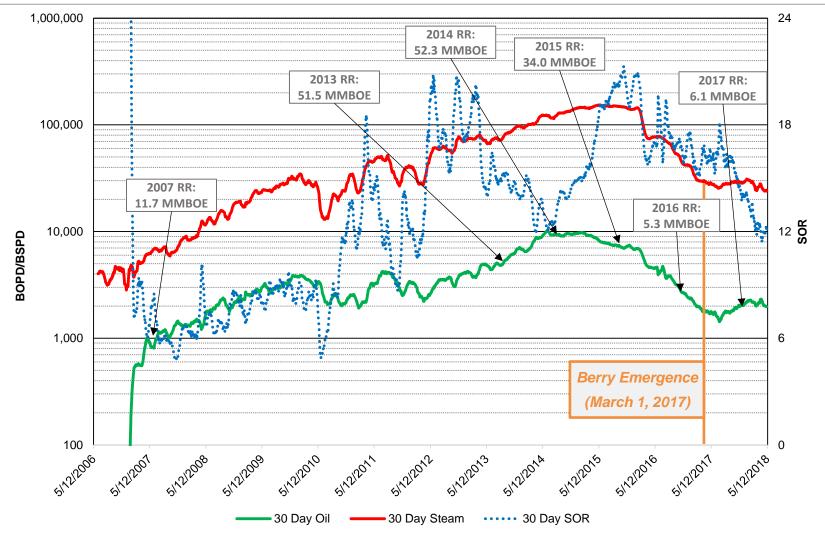

Dilation/Compaction with Net Dilation ($\uparrow \Delta P$)

- Initial pressurization of the reservoir (net dilation) is required to induce fluid flow to surface
- Each steam cycle diatomite undergoes dilation (injection) and compaction (production) acting as an efficient energy storage containment mechanism, providing drive energy to induce flowback to surface


Regulated Pressure Drawdown ($\uparrow \Delta P, \uparrow r_w$)

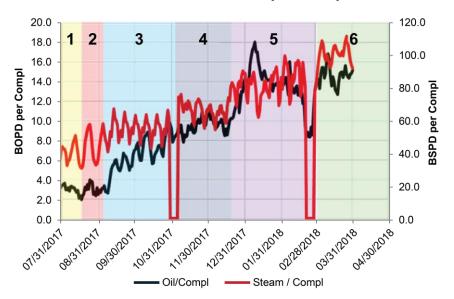
Back-pressure must be applied to control efficient release of energy from the reservoir $(\uparrow \Delta P)$ and prolong fracture connectivity with wellbore $(\uparrow r_w)$

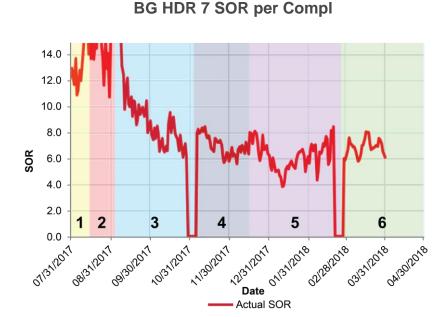
Recovery Fundamentals Hierarchy



Modified Darcy's Law: Radial Flow

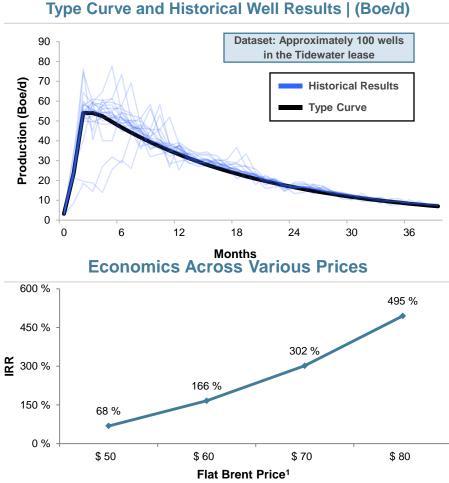
Thermal Diatomite Recovery Process Thermal Diatomite History




¹ Reserve information prepared based on 3rd party reserve reports.

Thermal Diatomite Recovery Process Belgian Header 7 Steaming Strategies

BG HDR 7 Production per Compl



- Process change resulting in better overall SOR and ultimate value
- Increasing cycle size through early time
- Focus on total volumes over injection rate

Stage	BSPD* Top Perf	Days btw Cycle	Cycle Days	~Vol per Cycle	Date Range
1	0.5	8.9	1.5	375	7/20/2017 - 8/10/2017
2	0.5	8.9	2.0	500	8/10/2017 - 9/5/2017
3	0.75	8.8	1.3	550	9/5/2017 - 11/1/2017
4	0.75	8.8	1.6	600	11/1/2017 - 12/19/2017
5	1.0	8.9	1.6	800	12/19/2017 - 3/5/2018
6	1.0	10.0	2.0	1,000	3/5/2018 - Current

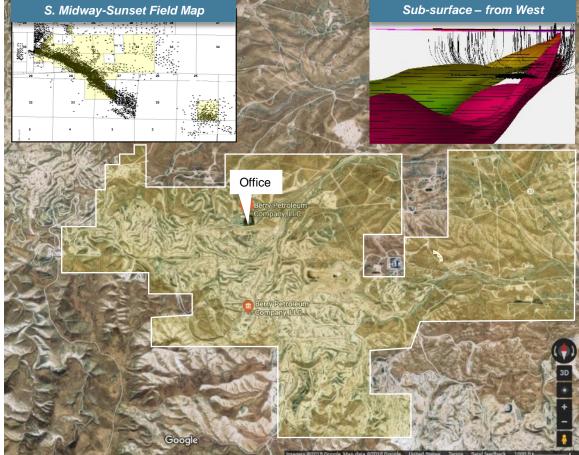
San Joaquin – Thermal Diatomite Well Type Curve¹ Overview

Asset Information

Area	NW San Joaquin Basin
Reservoir	Thermal Diatomite
Number of Wells (Tier 1 / Total)	774 / 1,678
WI/NRI	100 % / 97 %

Aggregate Well Type Curve Assumptions and Results

Gross Capex (\$mm / well)	\$ 0.5
Net EUR (Mboe)	29
% Oil	100 %
IP90 Production (Boe/d)	44.4
Brent Differential (\$/Bbl)	\$(3.63)
Fixed Opex per well (\$k/month)	\$ 2.83
Variable Opex ³ per boe (\$/Boe)	\$ 2.13
Steam ³ (\$/Boe)	\$ 8.94
Severance Taxes	1.9 %
Ad Valorem Taxes	3.5 %
IRR at Strip ⁴ as of May 31, 2018	359 % ⁵
PV-10 ⁶ (\$mm) per well	\$ 0.7


¹ Please see slide 2 for a note regarding the preparation of Berry's type curves. |² Assumes flat \$3 Henry Hub gas price. |³LOE costs based on run-rate average over 24 months of the well. |⁴ Berry's Strip Pricing oil, natural gas and NGL reserves were determined using index prices for natural gas and oil, respectively, as of May 31, 2018 without giving effect to derivative transactions. The average future prices for benchmark commodities used in determining Berry's Strip Pricing reserves were \$74.59 per Bbl for oil and NGLs for 2018, \$72.98 for 2019, \$69.15 for 2020 and \$66.49 for 2021 thereafter, on the ICE (Brent), and \$2.94 per MMBtu for natural gas for 2018, \$2.75 for 2019, \$2.68 for 2020 and \$2.66 for 2021 thereafter, on the NYMEX Henry Hub. For a comparison to SEC Pricing, please see slides 48-49. |⁵ Management IRRs differ significantly from DeGoyler and MacNaughton reserve report IRRs, which are capped at 100% by ARIES Petroleum Economics and Reserves Software. |⁶ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10.

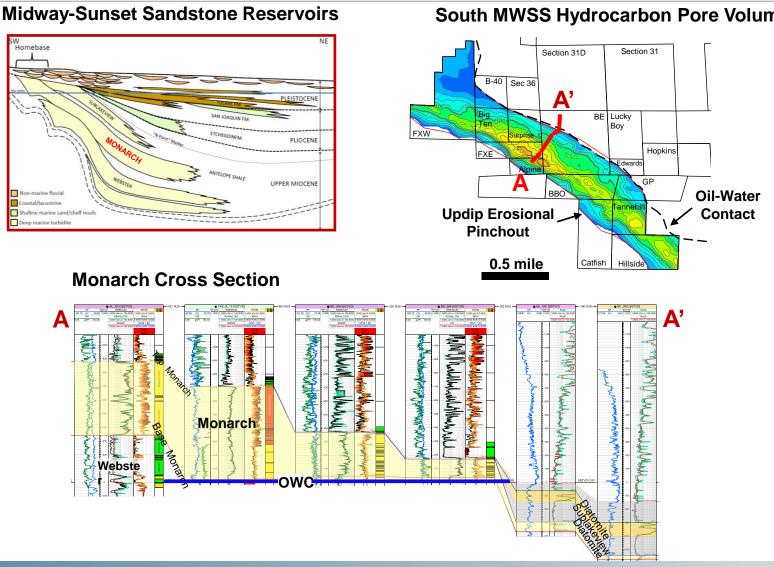
Midway-Sunset – Homebase

- 1,975 acres
- Some Fee Simple, some lease
- 2 Cogens (38 & 18 MW)

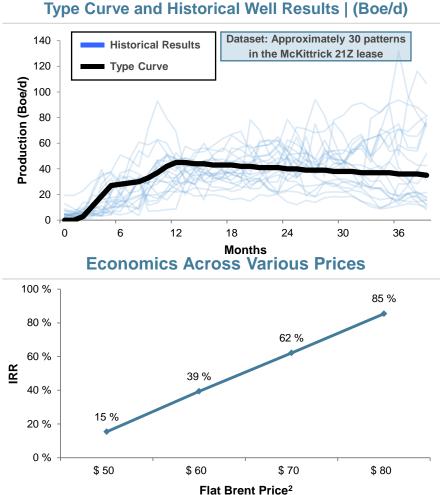
Overview of Thermal EOR Techniques using Steam

Steam Flood Diagram

Produced Steam Typical in shallow reservoirs with heavy crude Water Generation Separation & Recycling Steam injection improves oil mobility and is a drive Production Wells Injection Storage Well mechanism when developed as a flood **Overview** The latent heat of condensation maximizes the energy transfer in the reservoir Thermal EOR increases recovery factors substantially and in some cases the reservoir may not produce without it Cyclic steaming utilizes the same wellbore to inject steam and produce from the stimulated reservoir Steam Steam flooding requires dedicated steam injectors and Chest Depletion dedicated producers in various configurations Techniques Diatomite reservoirs are produced by cyclic steaming, utilizing the dilation and compression of the reservoir as Gravity the lift mechanism Some produced water is filtered and softened and comingled with fresh water for steam injection Hot Oil/ Condensate Steam generators burn natural gas to convert the water into steam at the desired quality and pressure Process Steam is injected into the reservoir Oil and water (including condensed steam) is produced and separated. The oil is sold and the water is recycled through the system **Cost Inputs**


Steam as EOR Technique

- Natural gas, used to generate steam
- Water softening
 - Production costs


Midway-Sunset: Monarch Sandstone Reservoir

South MWSS Hydrocarbon Pore Volume Map

San Joaquin – Sandstone Flood Pattern Type Curve¹ Overview

Asset Information

Area	San Joaquin Basin
Reservoir	Multiple
Drilling Pattern	2 Producing Wells: 1 Injector Well
Number of Wells (Tier 1 / Total)	1,860 / 2,284
WI/NRI Aggregate Pattern Assumptions and	
Gross Capex (\$mm / pattern)	\$ 1.2
Net EUR (Mboe)	114
% Oil	100 %
IP90 Production (Boe/d)	19.9
Brent Differential (\$/Bbl)	\$(5.63)
Fixed Opex per pattern (\$k/month)	\$ 4.40
Variable Opex ³ per boe (\$/Boe)	\$ 2.17
Steam ³ (\$/Boe)	\$ 16.67
Severance Taxes	1.9 %
Ad Valorem Taxes	3.5 %
IRR at Strip ⁴ as of May 31, 2018	65 %
PV-10 ⁵ (\$mm) per pattern	\$ 1.6

¹ Please see slide 2 for a note regarding the preparation of Berry's type curves. |² Assumes flat \$3 Henry Hub gas price. |³ LOE costs based on run-rate average over 24 months of the well. |⁴ Berry's Strip Pricing oil, natural gas and NGL reserves were determined using index prices for natural gas and oil, respectively, as of May 31, 2018 without giving effect to derivative transactions. The average future prices for benchmark commodities used in determining Berry's Strip Pricing reserves were \$74.59 per Bbl for oil and NGLs for 2018, \$72.98 for 2019, \$69.15 for 2020 and \$66.49 for 2021 thereafter, on the ICE (Brent), and \$2.94 per MMBtu for natural gas for 2018, \$2.75 for 2019, \$2.68 for 2020 and \$2.66 for 2021 thereafter, on the NYMEX Henry Hub. For a comparison to SEC Pricing, please see slides 48-49. |⁵ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10.

Our Actual Realized D&C Costs Have Aligned Closely with AFEs

D&C Cost Per Well (\$ in thousands)

Note: Average realized cost based on 2017 data.

San Joaquin Basin Remains a Significant Opportunity

- San Joaquin Basin still holds significant potential
 - Never bet against world-class source rocks
 - Back to basics subsurface understanding
 - Technology
 - Drilling & completion fit for purpose
 - ► 3D seismic
- Accessing the potential
 - Encourage competition joint ventures and farm-outs
 - Engage state & local governments and regulators
 - Education

A. Other Reference Materials

Historical Well List for Hill Diatomite Fairway

#	Well Name	Date	API	#	Well Name	Date	API	#	Well Name	Date	API	#	Well Name	Date	API
1	HILL 412A	1989-11-01	04029845870000	61	HILL 632K	2013-04-01	04030479820000	121		2005-06-01	04030266860000	181	HILL 474E	1997-07-01	04030074500000
2	HILL 422	1992-03-01	04029893650000	62	HILL 633A	2011-08-01	04030416320000		HILL 553C	2005-08-01	04030266870000	182		1997-07-01	04030054140000
3	HILL 511H	2006-08-01	04030298590000	63	HILL 643B	2012-02-01	04030416410000		HILL 554X	N/A	04029502860000		HILL 551B	2005-05-01	04030266060000
4	HILL 523B	2006-08-01	04030294830000	64	HILL 431C	1999-12-01	04030142470000		HILL 631C	2012-02-01	04030445230000		HILL 563C	2003-09-01	04030226480000
5	HILL 612D	2013-04-01	04030478850000	65	HILL 432F	2002-09-01	04030203780000	125		2011-04-01	04030416340000	185	HILL 563D	2003-09-01	04030226490000
6	HILL 622A	2012-02-01	04030443100000	66	HILL 443B	2001-08-01	04030176150000	126		2011-08-01	04030416380000	186	HILL 652D	2013-03-01	04030478370000
7	HILL 622B	2011-04-01	04030416260000	67	HILL 443C	2001-08-01	04030176160000		HILL 643A	2011-08-01	04030416400000	187	HILL 663D	2011-08-01	04030416470000
8	HILL 421F	2002-05-01	04030201660000	68	HILL 443F	2002-07-01	04030202480000		HILL 653A	2011-07-01	04030416460000		HILL 674C	2011-11-01	04030416490000
9	HILL 421K	2002-05-01	04030201700000	69	HILL 443J	2002-06-01	04030202490000		HILL 664	2011-07-01	04030416480000	189	HILL 674E	2011-11-01	04030443720000
10	HILL 421L	2002-06-01	04030201720000	70	HILL 454C	2002-07-01	04030202460000	130		1999-12-01	04030135410000	190	HILL 674G	2013-01-01	04030478490000
11	HILL 422K	2002-05-01	04030201710000	71	HILL 454D	2002-07-01	04030202470000		HILL 442J	2002-08-01	04030206850000	191	HILL 441C	1996-11-01	04030054270000
12	HILL 423D	2002-07-01	04030202630000	72	HILL 543B	2003-10-01	04030229940000		HILL 452F	2002-08-01	04030205410000		HILL 451G	2001-08-01	04030176170000
13	HILL 433A	2002-07-01	04030203760000	73	HILL 543C	2003-10-01	04030229950000		HILL 453B	1991-12-01	04029893670000		HILL 451H	2001-08-01	04030176180000
14	HILL 433B HILL 433C	2002-07-01	04030204060000	74	HILL 553F HILL 631	2005-06-01	04030266080000		HILL 453E	2002-08-01	04030203970000	194	HILL 451J HILL 451K	2001-07-01	04030180680000
15 16	HILL 522	2002-07-01 2005-04-01	04030205000000	75 76	HILL 631E	2012-02-01 2011-04-01	04030416270000 04030416300000	135	HILL 453F HILL 464A	2002-08-01 1994-02-01	04030203980000	195 196	HILL 451K	2001-08-01 2001-08-01	04030180690000
10	HILL 522A	2005-04-01	04030263730000 04030263750000	70	HILL 632	2011-04-01	04030444310000		HILL 464B	1994-02-01	04030015650000 04030015660000	190	HILL 452E		04030176190000 04030176200000
18	HILL 522A	2005-04-01	04030263740000	78	HILL 632B	2011-07-01	04030416310000		HILL 541D	2005-07-01	04030263780000	197	HILL 462L	2001-08-01 2001-08-01	04030176220000
19	HILL 523	2003-04-01	04030226380000	78	HILL 643	2011-07-01	04030416390000	130		2005-04-01	04030265810000	198	HILL 462M	2001-08-01	04030176230000
20	HILL 533A	2003-10-01	04030226440000	80	HILL 643E	2013-04-01	04030479240000	140		2005-05-01	04030263790000	200	HILL 473C	1997-05-01	04030074470000
20	HILL 533B	2003-10-01	04030306480000	81	HILL 643G	2013-04-01	04030478860000		HILL 541G	2005-05-01	04030263800000	200	HILL 4741	1997-05-01	04030074570000
22	HILL 535	2003-12-01	04030226390000	82	HILL 644	2013-03-01	04030416430000		HILL 641	2012-01-01	04030416330000	201		1997-05-01	04030074590000
22	HILL 534A	2003-12-01	04030226450000	83	HILL 644A	2011-00-01	04030416440000		HILL 641B	2012-01-01	04030416350000	202	HILL 551	2005-05-01	04030266030000
24	HILL 544	2003-12-01	04030226410000	84	HILL 654	2011-11-01	04030443680000		HILL 642D	2013-03-01	04030478310000	203	HILL 551A	2005-07-01	04030266040000
25	HILL 544A	2003-12-01	04030229900000	85	HILL 421G	2002-06-01	04030201670000	145		2011-08-01	04030416450000	204	HILL 562	2003-09-01	04030226420000
26	HILL 544B	2003-12-01	04030229470000	86	HILL 431B	1999-12-01	04030142450000		HILL 652C	2013-03-01	04030478360000	205	HILL 562A	2003-09-01	04030226460000
27	HILL 544C	2003-12-01	04030229960000	87	HILL 432J	2002-08-01	04030204000000		HILL 653H	2012-12-01	04030478390000	207	HILL 563	2003-12-01	04030229890000
28	HILL 622	2012-03-01	04030445210000	88	HILL 432K	2002-08-01	04030204010000		HILL 664B	2013-06-01	04030478460000	208	HILL 563A	2003-12-01	04030229920000
29	HILL 623	2012-01-01	04030443110000	89	HILL 4421	2002-09-01	04030203990000	149		2013-05-01	04030478470000	209	HILL 573	2003-12-01	04030229530000
30	HILL 633	2012-02-01	04030443120000	90	HILL 443D	2002-09-01	04030203950000	150		1992-01-01	04029893660000	210	HILL 574	2006-08-01	04030302330000
31	HILL 633B	2011-12-01	04030443130000	91	HILL 443E	2002-09-01	04030203960000		HILL 441D	1999-12-01	04030137380000	211	HILL 662	2011-12-01	04030443700000
32	HILL 644B	2012-01-01	04030443660000	92	HILL 443G	2002-08-01	04030205010000	152	HILL 441E	1999-12-01	04030137390000	212	HILL 662A	2013-02-01	04030478410000
33	HILL 644C	2013-04-01	04030478330000	93	HILL 443I	2002-08-01	04030203800000	153	HILL 441F	1999-12-01	04030137400000	213	HILL 673C	2011-11-01	04030443710000
34	HILL 644E	2013-05-01	04030478340000	94	HILL 443K	2002-09-01	04030204020000	154	HILL 441H	1999-12-01	04030135420000	214	HILL 674H	2013-01-01	04030478500000
35	HILL 421B	2001-08-01	04030176110000	95	HILL 443L	2002-08-01	04030204030000	155	HILL 4411	1999-11-01	04030137410000	215	HILL 674K	2012-10-01	04030478510000
36	HILL 421C	2001-09-01	04030176120000	96	HILL 453L	2002-08-01	04030204040000	156	HILL 442F	1999-11-01	04030135400000	216	HILL 461A	1997-10-01	04030076560000
37	HILL 421D	2001-08-01	04030176130000	97	HILL 553E	2005-07-01	04030266880000	157	HILL 442G	1999-12-01	04030135430000	217	HILL 461J	2001-07-01	04030176210000
38	HILL 421E	2001-08-01	04030176140000	98	HILL 631A	2012-02-01	04030416280000	158	HILL 452A	1994-02-01	04030015610000	218	HILL 462E	1997-09-01	04030082820000
39	HILL 4211	2002-05-01	04030201680000	99	HILL 631D	2011-04-01	04030416290000	159	HILL 463A	1994-02-01	04030015640000	219	HILL 462G	1997-11-01	04030082840000
40	HILL 421J	2002-05-01	04030201690000	100		2012-03-01	04030444300000	160		1994-01-01	04030015670000	220	HILL 462I	1998-01-01	04030076510000
41	HILL 432A	2001-08-01	04030142440000		HILL 642	2011-07-01	04030416370000		HILL 464D	1996-11-01	04030054220000	221	HILL 462Q	2001-07-01	04030176240000
42	HILL 432B	2001-08-01	04030178630000		HILL 642C	2011-12-01	04030444320000		HILL 464H	1997-10-01	04030089740000		HILL 462R	2001-07-01	04030176250000
43	HILL 432C	2002-07-01	04030202380000	103		2011-08-01	04030416420000	163		1998-06-01	04030090910000	223	HILL 462S	2001-08-01	04030176260000
44	HILL 432L	2002-09-01	04030203810000	104		2013-04-01	04030478320000		HILL 474B	1991-12-01	04029893690000	224	HILL 473E	1997-04-01	04030074490000
45	HILL 433E	2002-08-01	04030203770000		HILL 653F	2013-05-01	04030478380000		HILL 474L	2002-09-01	04030204050000	225	HILL 473G	1997-04-01	04030074520000
46	HILL 433F	2002-08-01	04030203790000		HILL 654A	2011-11-01	04030443690000	166		2003-12-01	04030229500000	226	HILL 4731	1997-05-01	04030074560000
47	HILL 443M	2002-06-01	04030202640000	107		2013-05-01	04030478400000		HILL 552A	2003-12-01	04030229910000	227	HILL 484	1997-12-01	04030089750000
48	HILL 443N	2002-06-01	04030202650000	108		1999-12-01	04030135340000		HILL 553DH	2005-06-01	04030268680000	228	HILL 584C	2006-08-01	04030302340000
49	HILL 444B	2002-06-01	04030202440000	109		1999-12-01	04030135350000		HILL 563G	2003-12-01	04030229510000	229	HILL 584E	2006-08-01	04030302350000
50	HILL 444C	2002-06-01	04030202450000		HILL 431D	1999-12-01	04030138830000		HILL 563H	2003-12-01	04030229520000	230	HILL 651	2011-11-01	04030443670000
51	HILL 543	2003-10-01	04030226400000		HILL 431E HILL 442B	1999-12-01	04030138840000		HILL 641C	2012-01-01	04030416360000	231	HILL 662M	2013-02-01	04030478440000
52 53	HILL 543A HILL 544D	2003-10-01 2003-12-01	04030228700000 04030229480000	112		1999-11-01 1999-12-01	04030137360000 04030137370000	172	HILL 652A HILL 664H	2011-12-01 2013-08-01	04030444330000 04030478870000	232	HILL 662N	2013-03-01	04030478450000
53 54	HILL 544D HILL 544E	2003-12-01	04030229480000		HILL 442C HILL 442D	1999-12-01	04030137370000		HILL 664K	2013-08-01	04030478880000				
54 55	HILL 544E HILL 621	2003-12-01	04030229490000		HILL 442D HILL 442E	1999-12-01	04030135380000		HILL 664P	2013-08-01	04030478480000				
56	HILL 621A	2012-04-01	04030416250000	115		1999-12-01	04030135390000	175		2013-01-01	04030478890000				
57	HILL 621C	2011-04-01	04030445200000	117		1999-12-01	04030135370000	170		2013-01-01	04030478520000				
58	HILL 622D	2012-03-01	04030445220000	118		1991-12-01	04029893680000		HILL 674P	2013-01-01	04030478530000				
59	HILL 632E	2012-03-01	04030479800000		HILL 542B	2005-05-01	04030263760000		HILL 451	1989-12-01	04029848740000				
60	HILL 632H	2013-04-01	04030479810000		HILL 542C	N/A	04030263770000		HILL 474C	1996-11-01	04030054260000				
				0				100							

Note: When inputting the API into the DOGGR website, input the 8 digit well API by truncating the California state code prefix (04) and excluding the trailing zeros from the 14 digit API code.

Historical Well List for Thermal Diatomite

#	Well Name	Date	API	#	Well Name	Date	API	#	Well Name	Date	API
1	TDW 34-28	2013-08-01	04030468620000	36	TDW 40-26	2014-01-01	04030468740000	71	TDW 46-22	2014-01-01	04030514260000
2	TDW 35-25	2013-12-01	04030468630000	37	TDW 40-28	2014-01-01	04030468470000	72	TDW 46-24	2014-05-01	04030467950000
3	TDW 35-27	2013-09-01	04030468520000	38	TDW 40-30	2013-03-01	04030467380000	73	TDW 46-26	2014-05-01	04030467960000
4	TDW 35-29	2014-01-01	04030489760000	39	TDW 41-17	2014-01-01	04030469410000	74	TDW 46-28	2014-05-01	04030467970000
5	TDW 36-22	2014-01-01	04030468640000	40	TDW 41-19	2014-01-01	04030468480000	75	TDW 46-30	2014-03-01	04030467450000
6	TDW 36-24	2013-11-01	04030468650000	41	TDW 41-21	2014-01-01	04030467850000	76	TDW 46-32	2012-10-01	04030467460000
7	TDW 36-26	2013-12-01	04030468340000	42	TDW 41-23	2014-01-01	04030467860000	77	TDW 47-23	2014-05-01	04030523320000
8	TDW 36-28	2014-01-01	04030468350000	43	TDW 41-25	2013-12-01	04030468750000	78	TDW 47-25	2014-05-01	04030523330000
9	TDW 37-19	2014-01-01	04030468360000	44	TDW 41-27	2013-12-01	04030468760000	79	TDW 47-27	2014-05-01	04030467980000
10	TDW 37-21	2014-01-01	04030468670000	45	TDW 41-29	2013-05-01	04030467500000	80	TDW 47-29	2014-05-01	04030467990000
11	TDW 37-23	2014-01-01	04030468680000	46	TDW 41-31	2014-01-01	04030467510000	81	TDW 47-31	2014-01-01	04030467470000
12	TDW 37-25	2014-01-01	04030468370000	47	TDW 42-18	2014-01-01	04030469420000	82	TDW 47-33	2012-12-01	04030467480000
13	TDW 37-27	2014-01-01	04030468690000	48	TDW 42-20	2014-01-01	04030452440000	83	TDW 48-24	2014-05-01	04030523340000
14	TDW 37-29	2013-09-01	04030468700000	49	TDW 42-22	2014-01-01	04030467870000	84	TDW 48-26	2014-05-01	04030522800000
15	TDW 38-14	2014-07-01	04030530280000	50	TDW 42-24	2014-01-01	04030466930000	85	TDW 48-28	2014-05-01	04030468000000
16	TDW 38-16	2014-07-01	04030452430000	51	TDW 42-26	2013-12-01	04030468770000	86	TDW 48-30	2014-11-01	04030468490000
17	TDW 38-18	2014-01-01	04030468380000	52	TDW 42-28	2012-10-01	04030467390000	87	TDW 48-32	2012-12-01	04030467490000
18	TDW 38-20	2014-01-01	04030468390000	53	TDW 42-30	2013-03-01	04030467520000	88	TDW 49-25	2014-05-01	04030522810000
19	TDW 38-22	2014-01-01	04030455480000	54	TDW 43-19	2014-01-01	04030469430000	89	TDW 49-27	2014-05-01	04030522820000
20	TDW 38-24	2013-12-01	04030468660000	55	TDW 43-21	2014-01-01	04030466940000	90	TDW 49-29	2014-11-01	04030530270000
21	TDW 38-26	2013-12-01	04030468400000	56	TDW 43-23	2014-01-01	04030466950000	91	TDW 49-31	2014-11-01	04030468500000
22	TDW 38-28	2013-12-01	04030468410000	57	TDW 43-25	2014-01-01	04030467880000	92	TDW 49-35	2014-11-01	04030468510000
23	TDW 39-15	2014-07-01	04030469360000	58	TDW 43-27	2013-09-01	04030467400000	93	TDW 50-26	2014-05-01	04030409320000
24	TDW 39-17	2014-01-01	04030409300000	59	TDW 43-29	2012-12-01	04030467410000	94	TDW 50-28	2014-11-01	04030530210000
25	TDW 39-19	2014-01-01	04030466960000	60	TDW 43-31	2014-01-01	04030467530000	95	TDW 50-30	2014-11-01	04030530250000
26	TDW 39-21	2014-01-01	04030468420000	61	TDW 44-22	2014-01-01	04030467890000	96	TDW 50-32	2014-11-01	04030530220000
27	TDW 39-23	2013-12-01	04030468710000	62	TDW 44-24	2014-01-01	04030467900000	97	TDW 50-34	2014-11-01	04030529880000
28	TDW 39-25	2013-12-01	04030468720000	63	TDW 44-26	2014-05-01	04030467910000	98	TDW 51-27	2015-02-01	04030546300000
29	TDW 39-27	2013-12-01	04030468430000	64	TDW 44-28	2012-11-01	04030467420000	99	TDW 51-29	2014-11-01	04030529890000
30	TDW 39-29	2013-12-01	04030468440000	65	TDW 44-30	2012-10-01	04030467430000	100	TDW 51-31	2014-11-01	04030530260000
31	TDW 40-16	2014-07-01	04030469380000	66	TDW 45-23	2014-01-01	04030467920000	101	TDW 51-33	2014-11-01	04030530230000
32	TDW 40-18	2014-01-01	04030468450000	67	TDW 45-25	2014-05-01	04030467930000	102	TDW 52-28	2015-02-01	04030431860000
33	TDW 40-20	2014-01-01	04030468460000	68	TDW 45-27	2014-05-01	04030467940000	103	TDW 52-32	2014-11-01	04030530240000
34	TDW 40-22	2014-01-01	04030467840000	69	TDW 45-29	2013-06-01	04030463270000	104	TDW 52-34	2015-02-01	04030529900000
35	TDW 40-24	2013-11-01	04030468730000	70	TDW 45-31	2013-03-01	04030467440000				

Note: When inputting the API into the DOGGR website, input the 8 digit well API by truncating the California state code prefix (04) and excluding the trailing zeros from the 14 digit API code.

Historical Well List for Sandstone

#	Well Name	Date	API	#	Well Name	Date	API	#	Well Name	Date	API
1	21Z 09-C2	2010-04-10	04030396340000	37	21Z O-18	2012-04-12	04030434490000	73	21Z LM-22Ai	N/A	04030528910000
2	21Z 09-C3	2010-04-10	04030396350000	38	21Z O-19	2012-04-12	04030434500000	74	21Z LM-22Bi	N/A	04030528920000
3	21Z H-20	2013-01-13	04030434440000	39	21Z O-20	2012-05-12	04030434510000	75	21Z LM-23i	N/A	04030528930000
4	21Z H-21X	2014-10-14	04030545250000	40	21Z O-21	2013-02-13	04030460640000	76	21Z MN-17AI	N/A	04030491210000
5	21Z H-22X	2014-10-14	04030545260000	41	21Z O-22	2013-02-13	04030460650000	77	21Z MN-17BI	N/A	04030491220000
6	21Z H-23X	2014-10-14	04030545270000	42	21Z O-23	2013-01-13	04030462820000	78	21Z MN-18Ai	N/A	04030528230000
7	21Z H-24	2015-04-15	04030529310000	43	21Z O-24	2014-11-14	04030477350000	79	21Z MN-18Bi	N/A	04030528240000
8	21Z J-20	2012-04-12	04030432840000	44	21Z Q-19X	2015-03-15	04030547220000	80	21Z MN-19Ai	N/A	04030529180000
9	21Z J-21	2013-02-13	04030460240000	45	21Z Q-20X	2015-03-15	04030547230000	81	21Z MN-19Bi	N/A	04030529190000
10	21Z J-22	2013-02-13	04030460250000	46	21Z Q-21	2014-10-14	04030529470000	82	21Z MN-22Ai	N/A	04030528980000
11	21Z J-23	2013-02-13	04030462770000	47	21Z Q-22	2014-10-14	04030529450000	83	21Z MN-22Bi	N/A	04030528990000
12	21Z J-24	2015-03-15	04030529340000	48	21Z Q-23	2014-10-14	04030530730000	84	21Z MN-23Ai	N/A	04030529000000
13	21Z K-20	2012-04-12	04030434190000	49	21Z Q-24	2015-03-15	04030529460000	85	21Z MN-23Bi	N/A	04030529010000
14	21Z K-21	2013-02-13	04030460300000	50	21Z HJ-20AI	N/A	04030547440000	86	21Z NO-18Ai	N/A	04030528250000
15	21Z K-22	2013-02-13	04030460320000	51	21Z HJ-20BI	N/A	04030547450000	87	21Z NO-18Bi	N/A	04030528260000
16	21Z K-23	2013-02-13	04030462780000	52	21Z HJ-21i	N/A	04030528170000	88	21Z NO-19Ai	N/A	04030528270000
17	21Z K-24	2015-03-15	04030529320000	53	21Z HJ-22i	N/A	04030528180000	89	21Z NO-19Bi	N/A	04030528280000
18	21Z L-19	2012-04-12	04030433760000	54	21Z HJ-23i	N/A	04030528190000	90	21Z NO-20Ai	N/A	04030528290000
19	21Z L-21	2013-02-13	04030460400000	55	21Z JK-18AI-C	N/A	04029527460000	91	21Z NO-20Bi	N/A	04030528300000
20	21Z L-22	2013-02-13	04030460410000	56	21Z JK-18BI	N/A	04030486140000	92	21Z NO-21Ai	N/A	04030529020000
21	21Z L-23	2013-02-13	04030462790000	57	21Z JK-19AI-C	N/A	04029552560000	93	21Z NO-21Bi	N/A	04030529030000
22	21Z L-24	2015-03-15	04030529330000	58	21Z JK-19BI	N/A	04030491100000	94	21Z NO-22Ai	N/A	04030529040000
23	21Z M-17	2012-05-12	04030434110000	59	21Z JK-20Ai	N/A	04030527870000	95	21Z NO-22Bi	N/A	04030529050000
24	21Z M-19	2012-05-12	04030434130000	60	21Z JK-20Bi	N/A	04030527880000	96	21Z NO-23Ai	N/A	04030529060000
25	21Z M-20	2012-04-12	04030434140000	61	21Z JK-21i	N/A	04030527890000	97	21Z NO-23Bi	N/A	04030529070000
26	21Z M-21	2013-02-13	04030460480000	62	21Z JK-22i	N/A	04030528200000	98	21Z OQ-19Ai	N/A	04030531910000
27	21Z M-22	2013-02-13	04030460500000	63	21Z JK-23i	N/A	04030528830000	99	21Z OQ-19Bi	N/A	04030531920000
28	21Z M-23	2013-03-13	04030462800000	64	21Z KL-21i	N/A	04030528860000	100	21Z OQ-20Ai	N/A	04030528310000
29	21Z M-24	2015-03-15	04030529480000	65	21Z KL-22i	N/A	04030528870000	101	21Z OQ-20Bi	N/A	04030528320000
30	21Z N-18	2012-04-12	04030433830000	66	21Z KL-23i	N/A	04030528880000	102	21Z OQ-21Ai	N/A	04030529080000
31	21Z N-19	2012-04-12	04030433840000	67	21Z LM-17AI	N/A	04030486200000	103	21Z OQ-21Bi	N/A	04030529090000
32	21Z N-20	2012-04-12	04030433850000	68	21Z LM-17BI	N/A	04030486210000	104	21Z OQ-22Ai	N/A	04030529100000
33	21Z N-21	2013-01-13	04030460590000	69	21Z LM-18Ai	N/A	04030486220000	105	21Z OQ-22Bi	N/A	04030529110000
34	21Z N-22	2013-01-13	04030460600000	70	21Z LM-18Bi	N/A	04030486230000	106	21Z OQ-23Ai	N/A	04030529120000
35	21Z N-23	2013-01-13	04030462810000	71	21Z LM-21Ai	N/A	04030528890000	107	21Z OQ-23Bi	N/A	04030529130000
36	21Z N-24	2014-10-14	04030477340000	72	21Z LM-21Bi	N/A	04030528900000				

Note: When inputting the API into the DOGGR website, input the 8 digit well API by truncating the California state code prefix (04) and excluding the trailing zeros from the 14 digit API code.

Proved Reserves as of December 31, 2017 SEC and Strip Prices

	Proved F		nd PV-10 ¹ as (SEC Pricing	of December g) ²	Proved Reserves and PV-10 ¹ as of December 31, 2017 (Strip Pricing) ³							
	Oil (MMBbl)	Natural Gas (Bcf)	NGLs (MMBbl)	Total (MMBoe)	% of Proved	PV-10 (\$mm)	Oil (MMBbl)	Natural Gas (Bcf)	NGLs (MMBbl)	Total (MMBoe)	% of Proved	PV-10 (\$mm)
PDP	63	100	1	81	57%	\$762	64	67	1	77	67%	\$1,205
PDNP	6	-	-	6	4%	\$89	6	-	-	6	5%	\$136
PUDs ⁴	32	137	-	55	39%	\$262	32	-	-	32	28%	\$521
Total	101	237	1	141	100%	\$1,114	102	67	1	115	100%	\$1,862

¹ Please see slide 2 for a note regarding the non-GAAP financial measure PV-10.] ² Our estimated net reserves were determined using average first-day-of-the-month prices for the prior 12 months in accordance with SEC guidance. The unweighted arithmetic average first-day-of-the-month prices for the prior 12 months were \$54.42 per Bbl ICE (Brent) for oil and NGLs and \$2.98 per MMBtu NYMEX Henry Hub for natural gas at December 31, 2017. Prices were calculated using oil and natural gas price parameters established by current SEC guidelines and accounting rules, including adjustment by lease for quality, fuel deductions, geographical differentials, marketing bonuses or deductions and other factors affecting the price received at the wellhead. |³ Our Strip Pricing reserves were prepared on the same basis as our SEC reserves and do not include changes to costs, other economic parameters, well performance or drilling activity subsequent to December 31, 2017, except for the use of pricing based on closing month futures prices as reported on the ICE (Brent) for oil and NGLs and NYMEX Henry Hub for natural gas on May 31, 2018 rather than using the average of the first-day-of-the-month prices for the prior 12 months in accordance with SEC guidance. Our Strip Pricing oil, natural gas and NGL reserves were determining our Strip Pricing reserves were for 2021 thereafter, on the ICE (Brent) for oil and NGLs for 2018, \$2.75 for 2019, \$2.68 for 2020 and \$2.66 for 2021 thereafter, on the NYMEX Henry Hub. The volume-weighted average 26 prices over the lives of the properties were \$61.67 per barrel of oil and Content pricing reserves was approximately ICE (Brent) for oil and natural gas prices as of a certain date. Strip Pricing futures prices are not necessarily an accurate projection of future oil and gas prices. Investors should be careful to consider forward prices in addition to, and not as a substitute for, SEC prices, when considering our oil and natural gas reserves. | ⁴ Using SEC Pricing as of December 31, 2017, th

Proved Reserves as of December 31, 2017 SEC and Strip Prices (Cont.)

	Proved F	Reserves as of	December 31	l, 2017 (SEC Pr	Proved Reserves as of December 31, 2017 (Strip Pricing) ²					
	San Joaquin and Ventura basins	Uinta basin	Piceance basin	East Texas basin	Total	San Joaquin and Ventura basins	Uinta basin	Piceance basin	East Texas basin	Total
Proved developed reserves:										
Oil (MMBbl)	61	7	-	-	68	63	7	-	-	70
Natural Gas (Bcf)	-	47	42	12	100	-	41	17	9	67
NGLs (MMBbl)	-	1	-	-	1	-	1	-	-	1
Total (MMBoe) ^{3, 4}	61	16	7	2	86	63	15	3	2	82
Proved undeveloped reserves ⁵ :										
Oil (MMBbl)	32	-	-	-	32	32	-	-	-	32
Natural Gas (Bcf)	-	-	137	-	137	-	-	-	-	-
NGLs (MMBbl)	-	-	-	-	-	-	-	-	-	-
Total (MMBoe) ⁴	32	-	23	-	55	32	-	-	-	32
Total proved reserves:										
Oil (MMBbl)	93	7	-	-	101	95	7	-	-	102
Natural Gas (Bcf)	-	47	179	12	237	-	41	17	9	67
NGLs (MMBbl)	-	1	-	-	1	-	1	-	-	1
Total (MMBoe) ⁴	93	16	30	2	141	95	15	3	2	115

¹ Our estimated net reserves were determined using average first-day-of-the-month prices for the prior 12 months in accordance with SEC guidance. The unweighted arithmetic average first-day-of-the-month prices for the prior 12 months were \$54.42 per Bbl ICE (Brent) for oil and NGLs and \$2.98 per MMBtu NYMEX Henry Hub for natural gas at December 31, 2017. The volume-weighted average prices over the lives of the properties were \$48.20 per barrel of oil and condensate, \$28.25 per barrel of NGL and \$2.935 per thousand cubic feet of gas. The prices were held constant for the lives of the properties, and we took into account pricing differentials reflective of the market environment. Prices were calculated using oil and natural gas price parameters established by current guidelines of the SEC and accounting rules including adjustments by lease for guality, fuel deductions, geographical differentials, marketing bonuses or deductions and other factors affecting the price received at the wellhead. | 2 Our Strip Pricing reserves were prepared on the same basis as our SEC reserves and do not include changes to costs, other economic parameters, well performance or drilling activity subsequent to December 31, 2017, except for the use of pricing based on closing month futures prices as reported on the ICE (Brent) for oil and NGLs and NYMEX Henry Hub for natural gas on May 31, 2018 rather than using the average of the first-day-of-the-month prices for the prior 12 months in accordance with SEC guidance. Our Strip Pricing oil, natural gas and NGL reserves were determined using index prices for natural gas and oil, respectively, as of May 31, 2018 without giving effect to derivative transactions. The average future prices for benchmark commodities used in determining our Strip Pricing reserves were \$74.59 per Bbl for oil and NGLs for 2018, \$72.98 for 2019, \$69.15 for 2020 and \$66.49 for 2021 thereafter, on the ICE (Brent), and \$2.94 per MMBtu for natural gas for 2018, \$2.75 for 2019, \$2.68 for 2020 and \$2.66 for 2021 thereafter, on the NYMEX Henry Hub. The volumeweighted average 26 prices over the lives of the properties were \$61.67 per barrel of oil and condensate, \$19.49 per barrel of NGL, and \$1.94 per thousand cubic feet of gas. We have taken into account pricing differentials reflective of the market environment, and NGL pricing used in determining our Strip Pricing reserves was approximately ICE (Brent) for oil less \$49.00. We believe that the use of forward prices provides investors with additional useful information about our reserves, as the forward prices are based on the market's forward-looking expectations of oil and natural gas prices as of a certain date. Strip Pricing futures prices are not necessarily an accurate projection of future oil and gas prices. Investors should be careful to consider forward prices in addition to, and not as a substitute for, SEC prices, when considering our oil and natural gas reserves. | 3 Approximately 9% of proved developed oil reserves, 0% of proved developed NGLs reserves, 0% of proved developed natural gas reserves and 7% of total proved developed reserves are non-producing. |⁴ Natural gas volumes have been converted to Boe based on energy content of six Mcf of gas to one Bbl of oil. Barrels of oil equivalence does not necessarily result in price equivalence. The price of natural gas on a barrel of oil equivalent basis is currently substantially lower than the corresponding price for oil and has been similarly lower for a number of years. For example, in the year ended December 31, 2017, the average prices of ICE (Brent) oil and NYMEX Henry Hub natural gas were \$54.82 per Bbl and \$3.11 per Mcf, respectively, resulting in an oil-to-gas ratio of over 17 to 1.15 Using SEC Pricing as of December 31, 2017, there were approximately 23 MMBoe of PUDs associated with projects in the Piceance basin. Subsequent to vear end, as a result of increasingly negative local cas pricing differentials, we revised our current development plan to exclude these Piceance locations.

